Factory Landscape Design
Image by Tomaž Jevšenak from Pixabay
Landscape Design

Factory Landscape Design

What will power the smart factories of the Industry 4.0 era? The internet of things, cloud computing and cyber-physical systems (CPS) technologies. Cyber-physical systems are powered by enabling cloud technologies which allow intelligent objects and cloud-based programmatic modules to communicate and interact with each other. These new cyber-physical manufacturing facilities use robotics, sensors, big data, automation, artificial intelligence, virtual reality, augmented reality, additive manufacturing, cybersecurity systems and other cutting-edge technologies to deliver unprecedented flexibility, precision and efficiency to the manufacturing process.

Yet while the Industry 4.0 revolution is forming, it’s important for companies aiming to be at its forefront to carefully consider which platforms are best positioned to deliver the promise of this exciting future, and what capabilities those platforms should possess.

Developing products, business processes and apps within an Industry 4.0 framework requires thinking beyond what any single product or system can be expected to do. In fact, the most exciting aspect of the Industry 4.0 vision is open and evolving industrial systems that can rapidly take advantage of the latest technological innovations. Imagine what the future could hold for an IoT product that has a complementary ecosystem build around it.

Intelligence sharing for smart factories

Up until now, the manufacturing automation landscape consisted of technology and data silos, based on hardware vendors. Companies with a global footprint of factories often end up with a heterogeneous and incompatible mix of automation technologies. And while these individual systems may each collect and transmit, they are not designed to easily make this valuable data available to other manufacturing systems, either within the same factory or perhaps located in another state or country.

IoT cloud platforms provide a powerful solution for harmonizing incompatible connected devices. On the factory floor, IoT compatible gateways provide a mediation layer between the proprietary protocols used by many vendors’ automation systems and the open internet-based protocols that are the foundation of IoT. Data from disparate manufacturers can be normalized in the gateways before transmission to an ingestion queue in the IoT cloud, while edge logic can be pushed to the gateways for local control of connected devices.

Mining potential of the cloud for healthy complex systems

But the real potential lies in the cloud. When cloud-based cybernetic intelligence is linked to global manufacturing operations, machine learning algorithms can identify patterns and extract insight that can optimize operations. As a factory in one region creates more optimized workflows that improve efficiency, those benefits can be rapidly exposed and propagated throughout the global operation. As predictive algorithms identify signs of potential system or subsystem failure in one factory, other factories can act quickly to avoid catastrophic incidents that can ripple through the entire business.

It’s useful to think of modern manufacturing environments as complex and interconnected living organisms, similar to the human body. Ensuring optimal health depends on the ability to:

  1. Rapidly identify exposure to pathogens
  2. Efficiently analyze root causes and potential secondary effects
  3. Develop effective remediation strategies

The first step requires diagnostic tools to visualize data across such interconnected systems, or steps two and three are very difficult to accomplish. And, if it is too costly or time-consuming to employ these tools, the patient is likely to get worse instead of better. So, what tools are necessary to realize an Industry 4.0 vision that will take smart factories to the next level?

The missing link: Programmer-less visual design

One of the most significant impediments to realizing the Industry 4.0 vision is implementing the necessary tools and applications to holistically visualize operations, identify opportunities for improvement and implement changes. Even in an IoT environment, applications must be created to take advantage of all of the data available in the cloud.